CFCS
Applications exploit the low toxicity, low reactivity, and low flammability of the CFCs and HCFCs. Every permutation of fluorine, chlorine, and hydrogen based on methane and ethane has been examined and most have been commercialized. Furthermore, many examples are known for higher numbers of carbon as well as related compounds containing bromine. Uses include, propellants in medicinal applications, and degreasing solvents.
Freon is DuPont's brand name for CFCs, HCFCs and related compounds. Other commercial names from around the world are Algofrene, Arcton, Asahiflon, Daiflon, Eskimon, FCC, Flon, Flugene, Forane, Fridohna, Frigen, Frigedohn, Genetron, Isceon, Isotron, Kaiser, Kaltron, Khladon, Ledon, Racon, and Ucon.
The physical properties of the CFCs and HCFCs are tunable by changes in the number and identity of the halogen atoms. In general they are volatile, but less so than parent alkane. The decreased volatility is attributed to the molecular polarity induced by the halides and the polarizability of halides, which induces intermolecular interactions. Thus, methane boils at -161 °C whereas the fluoromethanes boil between -51.7 (CF2H2) and -128 °C (CF4). The CFCs have still higher boiling points because the chloride is even more polarizable than fluoride. Because of their polarity, the CFCs are useful solvents. The CFCs are far less flammable than methane, in part because they contain fewer C-H bonds and in part because, in the case of the chlorides and bromides, the released halides quench the free radicals that sustain flames.
No comments:
Post a Comment