Search Blog

Friday, October 29, 2010

Aerosoles

Aerosoles
Like aerosols influence the climate. Atmospheric aerosols influence the transfer of energy in the atmosphere in two ways: directly through the scattering of sunlight; and indirectly through modifying the optical properties and lifetimes of clouds. The scattering of sunlight by aerosols is clearly demonstrated in the aftermath of a major volcanic eruption, when exceptionally colourful sunsets may be witnessed. The volcanic pollution results in a substantial reduction in the direct solar beam, largely through scattering by the highly reflective sulphuric acid aerosols. Overall, there is a net reduction of 5 to 10% in energy received at the Earth's surface. An individual eruption may cause a global cooling of up to 0.3oC, with the effects lasting 1 to 2 years
Atmospheric aerosols are very fine particles suspended in air. They are formed by the dispersal of material at the Earth's surface (primary aerosols), or by reaction of gases in the atmosphere (secondary aerosols). They include sulphates and nitrates from the oxidation respectively of sulphur dioxide and nitric oxide during the burning of fossil fuels, organic materials from the oxidation of volatile organic compounds (VOCs), soot from fires, and mineral dust from wind-blown processes. Natural aerosols, which also include sea salt and volcanic dust, are probably 4 to 5 times larger than man-made ones on a global scale, but regional variations in man-made pollution may change this ratio significantly in certain areas, particularly in the industrialised Northern Hemisphere. Although making up only 1 part in a billion of the mass of the atmosphere, they have the potential to significantly influence the amount of sunlight reaching the Earth’s surface, and therefore climate.


No comments:

Post a Comment